A function $f(\theta )$ is defined as $f(\theta )\, = \,1\, - \theta  + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ Why is it necessary for  $f(\theta )$  to be a dimensionless quantity ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since, $f(\theta)$ is a sum of different power of $\theta$ and as $RHS$ is dimensionless, hence $LHS$ should also be dimensionless.

Similar Questions

The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right)\,(V - b) = RT$. Here $P$ is the pressure, $V$ is the volume, $T$ is the absolute temperature and $a,\,b,\,R$ are constants. The dimensions of $'a'$ are

If the present units of length. time and mass $(m, s, k g)$ are changed to $100\; m, 100\; s$. $\frac{1}{10} \;k g$ then

If force $F$ , velocity $V$ and time $T$ are taken as fundamental units then dimension of force in the pressure is

$A, B, C$ and $D$ are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C\, ln\, (BD)$ holds true. Then which of the combination is not a meaningful quantity ?

  • [JEE MAIN 2016]

The quantum hall resistance $R_H$ is a fundamental constant with dimensions of resistance. If $h$ is Planck's constant and $e$ is the electron charge, then the dimension of $R_H$ is the same as

  • [KVPY 2011]